
Automatic Compilation of 
Logical Specifications 
into Efficient Programs 

Donald Cohen’ 
USC. Information Sciences Institute 

4676 Admiralty Way 
Marina del Rey, Ca. 90292 

Abstract 

We describe an automatic programmer, or “compiler” 
which accepts as input a predicate calculus specification of 
a set to generate or a condition to test, along with a 
description of the underlying representation of the data. 
This compiler searches a space of possible algorithms for 
the one that is expected to be most efficient. We describe 
the knowledge that is and is not available to this compiler, 
and its corresponding capabilities and limitations. This 
compiler is now regularly used to produce large programs. 

1. Int reduction 
This work is motivated by a desire to help programmers 

do their job better, i.e., more easily and quickly create and 
modify programs that are more efficient, correct and 
understandable. Our approach follows the well-travelled 
route of supplying a “higher level language” which allows a 
programmer to say more of what he wants the machine to 
do and less of the details of how it is to be done. This leads 
to programs that are shorter, easier to understand and 
modify, and contain fewer bugs. However, higher level 
languages tend to degrade efficiency, since their compilers 
fail to make many optimizations that a human might make. 
In fact, some optimizations cannot even be expressed in 
the higher level language. 

Our higher level language, APS, is an extension of lisp in 
which programs can be written with much less commitment 
to particular algorithms or data representations. This is a 
benefit to the degree (which we believe is quite large) that 
programmers spend their effort dealing with these issues. 
One way to avoid thinking about data representation is to 
use a single powerful representation for all data. To some 
extent this is the approach of APL [Pakin 681, 
PROLOG [Clocksin 841 and Relational Databases [Ullman 
821. This unfortunately results in a large performance 
penalty. APT, SETL [Schonberg 811 and MRS [Genesereth 
811 provide the illusion of a uniform relational 
representation, but avoid the penalty by representing 
different relations with different data structures. APT goes 
further by accepting ‘*specifications” that contain 
compound well-formed formulas (wffs). Its compiler 
assumes the responsibility of finding good algorithms to 

‘This research was supported by the Defense Advanced Research 
Projects Agency under contract No. MDAtXX3 81 C 0335. Mews and 
conclusions contained in this report are the authors’ and should not be 
interpreted as representing the official opinion or policy of DARPA, the 
U.S. Government, or any person or agency connected with them. 

implement these specifications. Another advantage of 
multiple representations, though not the focus of this 
paper, is that new things can be regarded as data, e.g., the 
+ function may be regarded as a relation which is true of 
infinitely many tuples. APT compiles uses of such relations 
into computations rather than data structure accesses2 

The compilation process is not entirely done by the 
machine. The programmer must provide a small amount of 
“annotation”, which is not part of the actual specification. 
The most important annotations tell AP5 how to represent 
the data. If the predefined representations are inadequate, 
he can add new ones. The compiler searches a space of 
algorithms appropriate for the given representations. Its 
job is to find the most efficient one that meets the 
specification. of course, the variablity of the 
representations makes this job much more difficult. This 
paper describes how the compiler does its job. 

The following programming methodology seems to work 
well for APT: First the programmer writes a specification. 
Next he adds annotations that select general (but 
inefficient) data representations. The result is compiled 
into a prototype that can be tested on small examples. 
(Even specifications contain bugs!) Finally he optimizes the 
prototype by changing the most critical annotations. 

2. Example 
Suppose we want a program to find the nephews of an 

input person. The data is a set of people along with the sex 
and parents of each. For simplicity we define a nephew as 
the son of a sibling (not including the son of a brother-in- 
law or sister-in-law), and we define siblings to include half- 
brothers and half-sisters. Figure 2-1 shows a sample lisp 
program for this task, and figure 2-2 shows a 
corresponding AP5 program. 

The APT program contains two wffs, one as a definition for 
the Sibling relation and the other as a specification of the 
objects desired as output. Wffs are represented in prefix 
notation. The quantifiers tl and 3 are represented by the 
symbols All and Exists. The connectives, A, V, -, etc. are 
represented by the symbols “and”, “or“, “not”, etc. 

Comparison of these two programs reveals that the lisp 
program specifies both a data representation and an 
algorithm while the APT program only specifies the result to 

2Computations can also express the intent of recursive definitions, 
which AP5 prohibits because they allow multiple interpretations. 

20 / SCIENCE 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



(Defun list-nephews (person) 
; Algorithm: 
; (1) get the parents of person, 
; (2) get their children, excluding the 
. input person (siblings) 
i (3) get their children (nephews and nieces) 
; (4) filter out the nieces 
; (5) remove dupl icate nephews 
; Representation: 
; persons are symbols (with property lists) 

; ii": 
x 'parents) is a list of x’s parents 

'children) is a list of x's children 
; (git i 'sex) is x's sex 
(remove-duplicates 

(loop for parent in (get person 'parents) 
nconc 
(loop for sibling in (get parent 'children) 

unless (eq person sibling) nconc 
(loop for nephew in 

(get sibling *children) 
when (eq (get nephew 'sex) 'male) 

ect nephew))))) 

-isp program to find nephews 
co1 

Figure 2-1: L 

(DeclareRel Sex 2) 

(DeclareRel Parent 
(DefineRel Sib1 ing 

: a binary relation, 
: e.g., (Sex Sam Male) 

2) ; (Parent child parent) 
0 Y) 

(and (not (es x ~1) 
(Exists (parent) 

(and (Parent x parent) 
(Parent y parent))))) 

(Defun list-nephews (person) 
(loop for nephew s.t. 

(and (Sex nephew ‘ma1 e) 
(Exists (sibling) 

(and (Sib1 ing person sib1 ing) 
(Parent nephew sib1 ing)))) 

collect nephew)) 

Figure 2-2: AP5 program to find nephews 

be computed. The APT program can be written and 
understood without thinking about either representation or 
algorithm, while the lisp program cannot be written or 
understood without understanding both. When similar 
representations for the Sex and Parent relations were 
selected from the library, the APT compiler generated the 

same algorithm used in the lisp programa However, other 
annotations might cause it to produce a very different 
program. For instance if there were only ten males in the 
world and the typical person had a thousand children, a 
better algorithm might start by enumerating the males. 
Such statistical information comprises most of the 

annotations other than relation representations. 

3. What the Compiler Does and Doesn’t Do 
The compiler expects to be told how to test and generate 

primitive relations such as Parent and Sex. It combines 
these small pieces of functionality into programs that test 

3Almost - the only difference was that it removed duplicates from the 
intermediate set of siblings. I was too lazy to make this optimization in 
the lisp program, although I would expect the result to be twice as fast. 
Also, it turns out that the AP5 algorithm for removing duplicates is linear 
in the size of the input, while remove-duplicetes (at least in the 
commonlisp I use) is quadratic. 

and generate compound wffs (those with connectives and 
quantifiers). The compiler can be thought of as three parts: 
a simplifier, a compiler for tests and a compiler for 
generators. The second and third of these embody 
knowledge of how to test and generate various sorts of 
compound wffs. Before that knowledge is applied, the wff 
is simplified. We will not describe the simplifier in detail. It 
does the sorts of things that other simplifiers do: removing 
double negations, repeated conjuncts and disjuncts and 
vacuous quantifiers, detecting simple tautologies and 
contradictions, etc. Like all simplifiers it could be 
improved, but for present purposes the reader should 
assume that it produces reasonable results. The compilers 
for tests and generators expect their inputs to be simplified. 

Not surprisingly, the compiler is somewhat limited, as 
compared to human programmers: 

- It does not understand general lisp code. A 
human programmer (but not APT) might use his 
understanding of lisp to optimize 
(loop for x s.t. (P x) 

until (lisp-predicate) 
do (lisp-code x)) 

by generating x’s in an order that reduces the 
number of iterations. 

- It produces only “uniform” algorithms. A 
program written by a human to find a prime 
between two inputs might use these inputs to 
choose among several internal subprograms. 
APT does not write such programs. It believes 
that the cost of any algorithm is independent of 
the particular inputs. 

- It does not understand the problem domain. If 
a prime number is defined as an integer greater 
than one with no integer divisor between one 
and itself, AP5 will not know to quit looking for 
divisors after the square root. 

- It cannot be given special purpose algorithms 
for compound wffs. We all know a good 
algorithm for generating a range of integers, 
but APT cannot find a terminating algorithm for 
generating 

{n 1 integer(n) A lower < n A n < upper}4 

Some of these limitations are discussed further in the 
section on future work. We now turn to a detailed 
description of what AP5 can do and how. 

4. Testing 
The description of a representation provides the compiler 

with an algorithm for testing relations with that 
representation and a cost estimate for that algoriihm. It is 
trivial to compile programs that test conjunctions, 
disjunctions, negations, etc. and to estimate their COStS. 

The cost estimates (and size estimates) of conjuncts and 

4 One way around this problem is to introduce the relation 
Integer-Between. We ten then tell AP5 how to generate this relation and 
never admit that it has anything to do with the “I” relation. We ten also 
replace the specification with a lower level program. 

Automatic Programming: AUTOMATED REASONING / 2 1 



disjuncts can be used to further improve the order in which 
the conjuncts or disjuncts are tested. 

Wffs of the form (Exists vars tif) are tested by trying to 
generate an example: 
(loop for vars s-t. wff thereis t) 
As we will see, not all wffs can be generated, so some wffs 
cannot be tested. Wffs of the form (All vars wff) are tested 
as if they had been written (not (Exists vats (not wff))). 

5. Generating 
The largest and most interesting part of the compiler is 

devoted to generating tuples that satisfy a wff. By 
generating we mean enumerating in any order all such 
tuples without producing any duplicates. of course, 
external mechanisms might decide to quit before they have 
all been produced, e.g., the algorithm for testing existential 
wffs quits when the first example is generated. This section 
attempts to: 

- describe what APT can and cannot generate 

- convince the reader (but not prove) that this 
covers all sets (with a few reasonable 
exceptions) that can be generated knowing 
only about logic and the primitive relations 

- convince the reader that APT usually finds 
efficient algorithms and point out known 
exceptions 

It is not assumed that the set of objects is enumerable.5 
Thus some generation tasks cannot be accomplished. For 
example, {x 1 true} cannot be generated. Likewise, for any 
set of variables, vars, and Mf, wff, it is not possible to 
generate both {vars 1 t&f}, and {vars 1 -Wn}. Even finite 
sets can fail to be generated due to the lack of a suitable 
algorithm. Suppose elements of the set S are identified by 
a special property on their property lists. This enables us to 
test whether an object is in S, but without a way to find all 
objects in the world with property lists, there may still be no 
way to generate S. Of course, it is also possible simply to 
neglect to tell AP!S how to generate a primitive wff. 

For the remainder of this section we assume that APT is 
given a set of variables, V, and a simplified wff, W. If not all 
of the variables of V are free in W, AP5 complains at compile 
time. Clearly, if any set of values for V satisfies W, then 
uncountably many sets of values do: any value can be used 
for variables that are not free in W. We therefore are only 
sacrificing the ability to generate {V 1 W} when it turns out 
to be empty. Such programs are not necessary, and are 
probably not what the programmer intends anyway. 

The generator compiler consists of one compiler for each 
logical construct, e.g., conjunction or existential 
quantification. Each compiler recursively finds the best 
ways to generate or test subwffs and combines these into a 
program for its construct. Each of the following sections 

?he set of objects is meant to include all potential lisp objects, e.g., 
all numbers and lists. Even if this set could be enumerated in principle, 
nobody would do it. Since we are interested in running programs it 
seems appropriate to consider the set of all objects not to be 
enumerable. 

will describe how a construct is generated, the coverage 
and efficiency of that algorithm, and how the cost and 
number of results are estimated. 

5.1. Primitive wffs 
The description of a representation provides the compiler 

with a set of algorithms for generating relations of that 
representation, along with estimates of their costs. Each 
such algorithm requires values for certain positions as 
inputs and generates the others as outputs. It can thus be 
characterized by a list of “i’s and “o”s, standing for inputs 
and outputs. For example, an algorithm characterized by 
(i o i o o) accepts as input two values, vl and v2, and 
generates x,y,t triples such that R(v1, x, v2, y, z). If the 
Employer relation were represented as a list of (person, 
employer) pairs there would be an algorithm characterized 
by (o o) which simply enumerated the pairs in the list. 

Suppose <args> is a list of k arguments to a k-ary relation, 
R, and V is a list of the variables in <args>. APT can 
generate {V 1 R<args>} iff R has a primitive generating 
algorithm with a pattern that contains “0”s in all of the 
positions where <args> contains variables. For example, 
the pattern above would identify an algorithm that could be 
used to generate {x,y I R(1 ,x,2,y,3)}, but not 
{KY I WxJ ,Zy,3)1. 

APT uses the cheapest generator that is sufficient. It also 
compiles in code to filter out tuples which fail to match the 
pattern. Such filters are needed in two cases. One is that 
the algorithm generates positions that are actually supplied 
as inputs, e.g., the program to find John’s employers might 
look something like 
(loop for pair in Employer-Tuple-List 

when (eq (car pair) ‘John) 
collect (cdr pair)) 

The other case is that some variable was used more than 
once. For example the compiled program to find people 
who employ themselves would be something like 
(loop for pair in Employer-Tuple-List 

when (eq (car pair) (cdr pair)) 
collect (cdr pair)) 

There is currently no way to supply an algorithm for 
generating {x 1 R(x,x)}. 

Estimates of the number of tuples matching a pattern can 
be provided by annotation. A simple heuristic uses those 
values to estimate the number of tuples matching more 
specific patterns (changing “0”s to “i”s). A default value is 
used if no such estimate exists. 

5.2. Negations 
The current version of APT cannot generate negations of 

primitive wffs. This is not a serious problem in practice, 
since people tend to name relations in such a way that the 
negations are not enumerable, e.g., we talk about the 
relation Parent, with finitely many positive tuples, rather 
than the relation Non-Parent with finitely many negative 
tuples. It would be easy to allow generator algorithms for 
negations of relations should the need arise. For negations 
of compound wffs, the negation is simply pushed inward 
(by the simplifier). 

)T ’ -- / SCIENCE 



5.3. Disjunctions 
In order to generate {V I w, V w2 V . . . V w,}, APT 

generates {V I wi} for each 1 5 i < n and removes 
duplications of tuples that satisfy multiple disjuncts.” 

If a set described by a disjunction is countable then the 
set described by each disjunct is countable. Therefore the 
only way for this algorithm to fail to generate a disjunctive 
countable set is for it to fail to generate some countable 
disjunct. Either there is some algorithm for generating this 
disjunct that AP5 simply doesn’t know or else the disjunct 
could actually be simplified out, e.g., 
{x 1 [x is even] V 

[x is an even Godel number of a non-theorem]} 

One algorithm for generating any set that can be tested is 
to filter a generable superset. However, this does not allow 
APT to generate any new disjunctions since any such 
superset of the disjunctive set could just as well be used to 
generate each disjunct. 

On the other hand, it would be faster to generate the 
super-set once for the entire disjunction. APT does not 
currently make this optimization. The simplifier might 
achieve this in some cases, e.g., by replacing 
{x ] [P(x) A Q(x)] V [P(x) A R(x)]) with 
{x I P(x) A [Q(x) V R(x)]}, but suppose we want a list of 
people who either have parents or children, i.e., 
{x I 3 y [Child(x,y) V Child(y,x)]}. The compiler will create 
two loops which it also ought to consider merging. 

AP5 pessimistically estimates the number of tuples 
satisfying a disjunction as the sum of the numbers of tuples 
satisfying its disjuncts. The estimated generating cost is 
the sum of the costs of generating the disjuncts. 

5.4. Existential Quantification 
Suppose we want to generate {V I 3 U w}, where U and V 

are lists of variables. We can assume that no variable 
appears more than once in V,U (the concatenation of the 
lists) and that every such variable is free in w.~ AP5 

generates {V I 3 U w} by generating {VU I w}. The values 
for U are discarded and those for V returned, after 
removing duplicate tuples. 

There are some representations for which better 
algorithms exist, e.g., if R(x,y) is represented as an AList 
where the CDR of each entry is a list of y values related to 
the x value in the CAR, there is no need to look at all the 
elements of the CDR. However, this is an example of an 
algorithm for a compound wff that depends on the 
representation of a component relation, and APT cannot at 
present be given such algorithms. 

6AP5 caches previously returned tuples in a hashtable. It knows that 
tuples of the first disjunct need not be tested and those of the last need 
not be stored. 

7This is because (1) the simplifier deletes variables from U that are not 
free in w, (2) variables in U are not free in [3 U w], and (3) AP5 complains 
if V contains variables not free in [3 U w] (this includes duplicated 
variables). 

There are countable sets described by wffs of the form 
{V 1 3 U w} that cannot be generated by this algorithm: 
{V,U I w} might contain uncountably many tuples which all 
share the same few values for V. However algorithms for 
actually generating such sets always seem to rely on 
domain knowledge or on transformations of the wff that 
could be done by the simplifier. 

Again, it is instructive to imagine that we have S, a 
superset of {V I 3 U w} which we can generate and filter by 
3 U w. This might be easier than generating {V,U 1 w}, 
since the values for V are already supplied. While finding 
an appropriate S requires domain knowlege in general, an 
example where logical knowledge suffices is when w is 
actually a conjunction of S and another wff, WI, i.e., we are 
generating {V I 3 U [S(V) A WI]}. But in this case S must 
not use any of the variables of U and the wff can be 
simplified to {V I S(V) A 3 U WI), for which, as we will see, 
APT will find the algorithm we described. 

The estimated cost of generating {V I 3 U w) is the cost of 
generating {V,U I w). The estimated number of tuples is the 
size of {VU I w) divided by the size of {U 3 w). 

5.5. Conjunctions 
APT can generate {V I w, A w2 A . . . A wn3 iff it can: 

1. choose some conjunct to generate first - we 
will assume without loss of generality that it is 
the first conjunct (we can always reorder the 
conjunct& Let VI be a list of variables in w,, 
and V2 be a list of the others 

2. generate {VI I wl) 

3. generate (V2 I w2 A . . . A w,} (given bindings 
for the variables in VI) 

If either VI or V2 is empty, the corresponding generation 
is just a test. The point is that we can use the bindings for 
the variables of VI that were obtained from WI in order to 
find bindings for the variables of V2. 

Example: Suppose we want {x I P(x) A Q(x)). Clearly, Vl 
will have to be {x3 and V2 the empty set. We still have to 
decide whether to generate P and test Q or vice versa. If 
only one can be generated there’s no choice. If neither can 
be generated, there’s no solution. If both can be 
generated, the choice can be made on efficiency grounds. 
The cost of generating P and testing Q is easily computed 
from the cost of generating P, the cost of testing Q (once), 
and the number of tuples expected in P. 

AP5 also considers the possibility of generating Q, storing 
the answers in a local cache which is more efficiently tested 
than the original representation of Q, then generating 
elements of P and testing them with the cache. This 
strategy is better if the cost of testing each element of P 
with the original representation of Q exceeds the cost of 
generating Q once, buildin 

ii! 
the cache and testing each 

element of P with the cache. 

% o really compare costs one must know how much of the set will 
actually be generated. AP5 assumes the whole set is needed, but the 
computation is organized to return the first values as soon as possible. 

Automatic Programming: AUTOMATED REASONING ; 2.3 



In general, when a conjunct is to be used many times, it 
may be worthwhile to make a local cache that is optimized 
for the kind of access that is needed. APT currently only 
considers building temporary caches for testing an entire 
conjunct. This misses some opportunities for optimization, 
a deficiency we hope to correct. As an example, suppose 
we want a list of people who either have parents or have no 
children, where the Child relation is stored as a list of 
(parent, child) pairs. There are uncountably many objects 
with parents or no children, so APT tests each person 
separately, searching the entire Child relation. It might be 
better to first build separate caches for the objects with 
children and those with parents. Then enumerate people 
and filter them with the caches. 

Example: Suppose we want {x,y,z I P(x,y) A Q(y,z)). In 
this case Vl must be either {x,y} or {y,z). If (x,y I P(x,y)) 
can be generated, then it’s only necessary to generate 
{z I Q(y,z)). The alternative is to generate {y,z I Q(y,z)) and 
{x I P(x,y)). In either case the resulting program will look 
like a pair of nested loops. Again, if the inner loop is 
expensive it may be worthwhile to build a local cache. 

Example: Suppose we want {x,y I P(x) A Q(y)). 
Obviously we have to be able to generate both {x I P(x)) 
and (y I Q(y)). The nested loop tends to be more efficient if 
the inner loop generates the conjunct that takes less time 
per output? Again, it may be worthwhile to build a local 
cache for the inner loop. 

It’s easy to find countable sets described by conjunctions 
that cannot be generated with the algorithm above: imagine 
two uncountable sets with a countable intersection. The 
conjunction could be generated if we had a generable 
superset S of the intersection. One example mentioned 
earlier in the context of domain knowledge is 
{x I integer(x) A lowers x A x 5 upper). 
If logical knowledge is sufficient to recognize such a case, 
then it would seem to be the responsibility of the simplifier, 
e.g., if A is an infinite set with an infinite complement and B 
is a finite set, 
Cx I [A(x) V WI A [-A(x) V B(x)13 = ix l B(x)3 
APT assumes pessimistically that the tuples that satisfy the 

conjuncts will be highly correlated, e.g., that if there are 100 
elements of P and 1000 elements of Q, there are nearly 100 
elements of the intersection. Given the estimates of the 
sizes of these sets, the costs of generating them (and 
testing them), and some algorithm as described above, it’s 
fairly easy to estimate the cost of generating the 
conjunction. APT could also use annotations estimating 
correlations among sets to improve its size estimates. This 
would allow it to apply the strongest filters earliest. 
Suppose sets P, Q and R each have the same size and the 
same cost for generating and testing. If P has a large 
intersection with each of 0 and R, but 0 and R have a small 
intersection, the best way to intersect all three is to 
intersect 0 and R first and leave P for last. Unfortunately 

%h e actual analysis shows that the comparison should be done on 
the generation time divided by one less then the size, since each relation 
has to be generated at least once either way. 

2-t / SCIENCE 

this data seems too much to ask of the user. 

Some conjunctions can be generated in many different 
ways. Much effort has been spent optimizing the search for 
the best algorithm, but space does not permit a description 
of how this search is performed. The potential for 
exponential explosion has not been a problem in practice. 
Compilation of queries with conjunctions tends to be more 
expensive than other wffs, but not enough so to discourage 
their use. 

5.6. Universal Quantification 
APT cannot generate {V I V U w). A degenerate case that 

APT could compile arises when {V,U I w) can be generated: 
(V I V U w) is trivially empty (since any set of values for V 
would require w to have too many tuples of U to generate). 
Again, we think it’s acceptable not to compile expressions 
with constant values since they are probably errors and 
could always be written in a better way. 

If {V I V U w) is countable, {V,U I w) must contain many 
U’s for a few V’s APT cannot verify that a V is in the set by 
checking all the U’s, because there are too many. Another 
approach is to determine that there are no values of U for 
which V fails to satisfy w. The remaining problem of 
generating candidate V’s could be solved if {V I V U w) 
were known to be a subset of some generable set, S. 

One case where this strategy would seem possible is 
where w has the form [S(V) A -PI, i.e., S does not depend 
on U, S is a super-set of the set we want, and the universal 
property can be checked by an algorithm that finds the 
counterexamples. In this case, we are trying to generate 
{V I V IJ PO’) A 4’13, which can be simplified to 
{V I S(V) A V U -P), which can be generated by the 
algorithm for conjunctions. 

As an example, suppose we have a relation Grade which 
is true of the 34uples, <x,y,z> such that student x got grade 
y in course z, One possible query with a universal 
quantifier is a request for a list of all the straight-A students, 
i.e., the students all of whose grades are A’s. Notice that 
APT couldn’t possibly generate the objects all of whose 
grades are A’s, since this would include all objects without 
any grades, which is almost all objects in the world. The 
point is that universal queries tend to specify a generable 
range, and that APT can use this range to compile an 
algorithm that generates the range and tests the universal 
condition. In APT the straight-A students could be 
generated by this program: 
(loop for x s.t. 

(and (Student x) 
(All (Y 2) 

(imp1 ies (Grade x y z) (= y ‘A)))) 
collect x) 

6. Related work 
[Smith 851 discusses the problem of optimizing 

conjunctions, which is the APT compiler’s hardest problem. 
The space of algorithms considered is quite similar to the 
one used in APT but the cost model is much more simplistic: 
every conjunct is assumed to be either ungenerable or 
generable in constant time per tuple. Smith also deals 



extensively with the issue of searching for the best 
ordering, which we have not discussed here, other than 
remarking that AP5 seems to Solve it in practice. 

The largest body of work related to AP5 compilation deals 
with database query optimization [Ullman 821. The biggest 
difference is that database systems do not allow user 
defined data representations. The representations 
available can only represent finite relations, so general 
computations cannot be treated like relations. Another 
major difference is that AP5 makes the assumption, typical 
of most programming, that it’s dealing with data that fits in 
the address space. Database algorithms assume the 
opposite and therefore do not consider some of APB’s 
algorithms. For instance ~~5’s algorithm for eliminating 
duplicates requires that the set of previously generated 
tuples fit in the address space. Other differences between 
databases and APT are similar to those described by Smith 
in his comparison of databases with his own work. 

7. Future Plans 
Several failings of the APT compiler which we hope to 

correct have already been mentioned. In addition, some of 
the limitations listed in section 3 can be attacked. For one 
thing, it would be easy to accept generating algorithms for 
arbitrary wffs. The hard problem is recognizing when 
another wff can be transformed to make use of that 
algorithm. A trivial example is that we would like to 
recognize that an algorithm for generating a particular 
conjuction applies when more conjuncts are added. 
Fortunately, this problem does not have to be solved 
completely in order to gain significant advantages. 

APT will never have as much domain knowledge as 
humans, but some kinds of domain knowledge are readily 
available and offer immediate advantage. One candidate is 
type information. Suppose we represent Parent(x,y) by 
putting y on the parent property of x and x on the child 
property of y. Then {x,y ] Parent(x,y)} cannot be generated. 
However, if we knew that the Parent relation could only 
relate people, we could instead try compiling 
{x,y ] Parent(x,y) A Person(x) A Person(y)), which would 
succeed if the set of people could be generated. The same 
type information could be used to optimize this to 
{x,y ] Parent(x,y) A Person(x)}. Similarly, if the set of 
people cannot be directly generated, it might have a 
generable super-type. 

We would ultimately like AP5 to choose representations 
for relations. One problem is that we usually want to run 
part of the program before the whole program is written. 
This requires representations to be chosen for the first part. 
Suppose, for example, that AP5 decides to represent the 
Parent relation with the parent and child properties. If a 
later addition to the program needs the set of (parent, child) 
pairs it will be too late to recover this data. New 
annotations might reserve (or forfeit) the right to make such 
requests. Of course, the global optimization problem is 
also more difficult, and requires more data, such as the 
relative frequency of different requests and their time 
constraints. 

8. Conclusion 
We have described how APT compiles logical 

specifications into efficient lisp programs, given a small 
amount of annotation. We have also described the 
limitations of the compiler. Despite these limitations AP5 
has proven very useful. The effect is to automate much of 
the work of programming. APT is currently used by a Small 
number of people on a regular basis. One indication of 
success is that we tend not to think about what the AP5 
compiler does. We simply assume that our specifications 
are being compiled into acceptably efficient programs. The 
only reasons for looking at the algorithms chosen by the 
compiler are curiosity and performance bugs, which can 
usually be fixed by changing annotations. 

References 

[Clocksin 841 W. F. Clocksin and C. S. Mellish, 
Programming in Prolog, Springer=Verlag, New York, 
1984. This book is chosen as a representative of a 
large Prolog literature. 

[Genesereth 811 Michael R. Genesereth, Russell Greiner 
and David E. Smith, MRS Manual, Stanford Heuristic 
Programming Project, 1981. Memo HPP-80-24 

[Pakin 681 Sandra Pakin, APL\360 reference manual, 
Science Research Associates, Chicago, 1968. 

[Schonberg 811 Schonberg, E., Schwartz, J.T. 8 Sharir, M., 
“An automatic technique for selection of data 
representations in SETL programs,” ACM 
Transactions on Programming Languages and 
Systems 3, (2) April 1981, 126-143. 

[Smith 851 David E. Smith and Michael R. Genesereth, 
“Ordering Conjunctive Queries,” Artificial 
Intel/&ence 26, (2), May 1985, 171-215. 

[Ullman 821 Jeffrey D. Ullman, Principles of Database 
Systems, Computer Science Press, Rockville, 
Maryland, 1982. This book is chosen as a 
representative of a large database literature. 

Automatic Programming: AUTOMATED REASONING / 2 j 


